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ABSTRACT

The modelling of general constitutive relation-
ships in SCN (Symmetrical Condensed Node) TLM is
presented. The technique consists of decoupling the
scattering matrix from the medium by using equiva-
lent node sources with state-variable formulation of
the constitutive relationships. The procedure requires
few modifications to TLM. Numerical examples are
presented.

INTRODUCTION

The basic TLM formulation requires that the con-
stitutive parameters of the medium ¢, p and o be
specified as constants [1]. Therefore, an appropriate
wide-band modelling of general (dispersive, nonlin-
ear, etc...) media cannot be performed without major
modification of the algorithm.

The TLM algorithm can be modified to represent
general constitutive relationships. This was done in
2D-TLM for frequency dependent [2] and nonlinear
[3] dielectric properties by separating the scattering
at the node from the properties of the dielectric. The
extraction was achieved by representing the dielec-
tric as a circuit network connected to the node by a
transmission line of normalized characteristic admit-
tance Y,/ Yy=4.

The procedure presented in this paper is a gener-
alization of this approach for three dimensions with
efficient representation of the constitutive relation-
ships. This is done by applying the technique
described in [5] to previously decoupled scattering
matrices. The medium constitutive relationships are
solved using equivalent node sources and state-vari-
ables.

THEORY

This section describes the formulation of general
materials for SCN TLM modelling. It is organized in
two major topics: obtention of the SCN and formula-
tion of state-variable equations. In the first part,
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decoupled series and shunt nodes are used to obtain
the SCN formulation. The second part describes the
obtention of the state-equations of the medium.

I - SCN FORMULATION

The SCN formulation is obtained by combining
2D shunt and series nodes [5]. These nodes are
decoupled from the medium using the procedure
described in [3]. The resulting medium constitutive
equations are:
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and the reflected voltages on branches 1-12 are
calculated using [5], with the numbering scheme
given in [6]:
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The equivalent current sources are obtained from
the polarization current i,,, and the total voltage

across the node while the equivalent voltage sources

are created with the magnetization voltage v, and

total current at the node. The resulting sources are
substituted into (1):
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The sources are calculated at each timestep by:
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The solution of (5), (4) and (3) will result in the
reflected voltages in lines 1-12. The propagation
between nodes is not affected.

This procedure is applicable to all kinds of consti-
tutive relationships. The adaptation to usual TLM
programs, [6], is done by setting Y,=Y,=Y,=4 and
Z,=Z,=7,=4 to calculate the equivalent sources (5)
and using (4) and (2) to obtain the incident voltages
from the stubs. The reflected voltages in branches 1-
12 are obtained with (3).

II - STATE-VARIABLE APPROACH

The calculation of the voltages vy, vy and v, and
the currents iy, i, and i, can be done once the consti-
tutive relationslzt’ips P=P(EH) and M=M(EH) are
defined. In the state-variable approach all the volt-
ages and currents can be calculated for all kinds of
media.

A example is the anisotropic material with non-
diagonal tensor:
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The constitutive state-equation is:

- - r
vx vx vax
r
vy Vy Vay
-1 r
2A t% ‘.)z = —4 [F] [0] ‘-’z +Z£ Vaz (9)
2 (o1 G175 %oy,
i i
ty ly v;y
L2 L 2]
[Vnd

LN

The state-variable approach also allows the use of
equivalent circuit networks to model the medium,
[2]. In the case of dispersive dielectric medium mod-
elled by a first-order Debye approximation, the fre-
quency domain permittivity function is:
€ —¢€,
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This corresponds to a RC circuit shown in Fig, 1.
The state-equation can be obtained directly from the
differential equation describing (9):
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or, from the equivalent circuit, Fig. 1:
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resulting in the state-equation:
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The state-equations may be solved with one of
the stable discretization schemes for the differential
operator:

a) Backwards Euler:
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where [U] is the identity matrix.
b) Approximate trapezoidal:
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NUMERICAL RESULTS

This technique was validated by comparing SCN
TLM results for a dielectric-filled isotropic
waveguide and calculating the cutoff frequency of an
anisotropic waveguide. Both examples simulated a
WR-28 (7.112 mm by 3.556 mm) waveguide using
regular mesh with a discretization of 24 x 12 x 4.

In the first case, the waveguide was filled with a
dielectric with ¢, of 222 and the results were
obtained using the usual TLM and the state-variable
formulation as shown in Fig. 2. It can also be seen
that although the backwards Euler scheme is lossy
there is no change in the central frequency.

In the second case a sapphire substrate was used
as a dielectric. The permittivity tensor is:
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where the dielectric was sapphire (¢, = 9.34 and
e, = 11.49), [7]. :

The optical axis lies on the xy plane, rotated by an
angle ¢ with respect to the x axis.The problem was
calculated for ¢ of 02, 452 and 902 using backwards



Euler discretization. The comparison between the
exact and calculated results is shown in Table - L

CONCLUSION

The technique presented in this paper can be
used to model general constitutive relationships and
requires few modifications to a TLM program. A gen-
eral description of the medium relationships was
obtained with equivalent node sources and the state-
variable approach. The technique was validated by
comparison with stub-loaded SCN results and exact
solutions for the anisotropic case. Good agreement
was observed in both cases.
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Table 1: - Comparison of Analytical and Calculated
Results for the sapphire example.

Analytical Cutoff Axis SCN - Error
Frequency Angle TLM (%)
6.2221 GHz 0° 6.21 0.19
GHz
6.5354 GHz 45° 6.57 -0.53
GHz
6.9012 GHz 90° 6.90 0.02
GHz
4

L
F

Fig. 1 Equivalent circuit network in the u (u=x,y,z)
direction for the case of a dispersive dielectric
medium modelled by a Debye approximation.

Vv, C, C,

=

Comparison of Results — WR28 waveguide
30 v v v v

251

20t

magnitude
>

o
j=]

3

12

(10 14 16
frequency (GHz)

Fig. 2 Comparison of a WR 28 waveguide filled with
dielectric e, = 2.22- cutoff frequencies. Solid line -
stub-loaded SCN-TLM, dashed line - State-variable
equations (backwards Euler discretization), dashed
and dotted line - State-variable equations (approxi-
mate trapezoidal discretization).
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